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ABSTRACT
Click-through rate (CTR) prediction plays a critical role in recom-

mender systems and online advertising. The data used in these

applications are multi-field categorical data, where each feature

belongs to one field. Field information is proved to be important

and there are several works considering fields in their models. In

this paper, we proposed a novel approach to model the field infor-

mation effectively and efficiently. The proposed approach is a direct

improvement of FwFM, and is named Field-matrixed Factorization

Machines (FmFM, or 𝐹𝑀2
). We also proposed a new explanation

of FM and FwFM within the FmFM framework, and compared it

with the FFM. Besides pruning the cross terms, our model supports

field-specific variable dimensions of embedding vectors, which acts

as a soft pruning. We also proposed an efficient way to minimize

the dimension while keeping the model performance. The FmFM

model can also be optimized further by caching the intermediate

vectors, and it only takes thousands of floating-point operations

(FLOPs) to make a prediction. Our experiment results show that

it can out-perform the FFM, which is more complex. The FmFM

model’s performance is also comparable to DNN models which

require much more FLOPs in runtime.
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1 INTRODUCTION
Click-through rate (CTR) prediction plays a key role in recom-

mender systems and online advertising, and it has attracted much

research attention in the past decade [3, 6, 14, 20, 23, 24]. The

data involved in CTR prediction are typically multi-field categorical
data [16, 26]. Such data possess the following properties. First, all

the features are categorical and are very sparse since many of them

are identifiers. Therefore, the total number of features can easily

reach millions to billions. Second, every feature belongs to one and

only one field and there can be tens to hundreds of fields.

A prominent model for these prediction problems is logistic

regression with cross-features [3]. When all cross-features are con-

sidered, the resulting model is equivalent to a polynomial kernel of

degree 2 [2]. However, it takes too many parameters to consider

all possible cross-features. To resolve this issue, matrix factoriza-

tion [1, 11] and factorization machines (FM) [18, 19] was proposed

to learn the effects of cross features by dot products of two fea-

ture embedding vectors. Based on FM, Field-aware Factorization

Machines (FFM) [9, 10] was proposed to consider the field infor-

mation to model the different interaction effects of features from

different field pairs. Recently, a Field-weighted Factorization Ma-

chine (FwFM) [15, 16] model was proposed to consider the field

information in a more parameter-efficient way.

Existing models that consider the field information either has

too many parameters, such as FFM [9, 10], or is not very effective,

such as [16]. We propose to use a field matrix between two feature

vectors to model their interactions, where the matrix is learned

separately for each field pair. Wewill show that our field-pair matrix

approach achieves good accuracy performance while maintaining

computational space and time efficiency.

2 RELATEDWORKS OVERVIEW
Logistic Regression (LR) is the most widely used model on multi-

field categorical data for CTR prediction [3, 20]. Suppose there are

𝑚 unique features {𝑓1, · · · , 𝑓𝑚} and 𝑛 different fields {𝐹1, · · · , 𝐹𝑛}.
Each field may contain multiple features, while each feature be-

longs to only one field. To simplify the notation, we use index 𝑖 to

represent feature 𝑓𝑖 , and 𝐹 (𝑖) to represent the field which 𝑓𝑖 belongs
to. Given a data set 𝑺 = {𝑦 (𝑠) , 𝒙 (𝑠) }, where 𝑦 (𝑠) ∈ {1,−1} is the
label (clicked or not) and 𝒙 (𝑠) ∈ {0, 1}𝑚 is the feature vector in

which 𝑥
(𝑠)
𝑖

= 1 if feature 𝑖 is active for this instance otherwise

https://doi.org/10.1145/3442381.3449930
https://doi.org/10.1145/3442381.3449930
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𝑥
(𝑠)
𝑖

= 0, the LR model parameters𝒘 are estimated by minimizing

the following loss function:

min

𝒘
[
|𝑆 |∑
𝑠=1

log(1 + exp(−𝑦 (𝑠)Φ𝐿𝑅 (𝒘, 𝒙 (𝑠) ))) + 𝜆∥𝒘 ∥2
2
] (1)

The first term is the log loss, and the second term is the L2 regular-

ization term where 𝜆 is the regularization weight, and

Φ𝐿𝑅 (𝒘, 𝒙) = 𝑤0 +
𝑚∑
𝑖=1

𝑥𝑖𝑤𝑖 (2)

is a linear combination of individual features.

However, linear models lack the capability to represent the fea-

ture interactions [3]. As cross features may have more important

factors than those single features, many improvements have been

proposed in the past decades.

Degree-2 Polynomial (Poly2) models as a general way to ad-

dress this problem is to add feature conjunctions. It has been shown

that Poly2 models can effectively capture the effect of feature

interactions[2]. Mathematically, in the loss function of equation (1),

Poly2 models consider replacing Φ𝐿𝑅 with

Φ𝑃𝑜𝑙𝑦2 (𝒘, 𝒙) = 𝑤0 +
𝑚∑
𝑖=1

𝑥𝑖𝑤𝑖 +
𝑚∑
𝑖=1

𝑚∑
𝑗=𝑖+1

𝑥𝑖𝑥 𝑗𝑤ℎ (𝑖, 𝑗) (3)

where ℎ(𝑖, 𝑗) is a function which hashes feature conjunction (𝑖, 𝑗)
into a natural number in the hashing space 𝐻 to reduce the number

of parameters. Otherwise the number of parameters in the model

would be in the order of 𝑂 (𝑚2), which is too many to be learned.

Factorization Machines(FM) learn an embedding vector 𝒗𝑖 ∈
R𝐾 for each feature, where 𝐾 is a hyper-parameter and is usually

a small integer, e.g., 10. FM model the interaction between two

features 𝑖 and 𝑗 as the dot product of their corresponding embedding

vectors 𝒗𝑖 , 𝒗 𝑗 :

Φ𝐹𝑀 ((𝒘, 𝒗), 𝒙) = 𝑤0 +
𝑚∑
𝑖=1

𝑥𝑖𝑤𝑖 +
𝑚∑
𝑖=1

𝑚∑
𝑗=𝑖+1

𝑥𝑖𝑥 𝑗 ⟨𝒗𝑖 , 𝒗 𝑗 ⟩ (4)

FM usually outperform Poly2 models in applications involving

sparse data such as CTR prediction. This is because it models the

interaction between two features by a dot product between their

corresponding embedding vectors. These embedding vector of a

feature is meaningful as long as the this feature appears enough

times during model training. However, FM neglect the fact that a

feature might behave differently when it interacts with features

from different other fields.

Field-aware Factorization Machines (FFM) model such dif-

ference explicitly by learning 𝑛 − 1 embedding vectors for each

feature, say 𝑖 , and only using the corresponding one 𝒗𝑖,𝐹 ( 𝑗) to in-

teract with another feature 𝑗 from field 𝐹 ( 𝑗):

Φ𝐹𝐹𝑀 ((𝒘, 𝒗), 𝒙) = 𝑤0 +
𝑚∑
𝑖=1

𝑥𝑖𝑤𝑖 +
𝑚∑
𝑖=1

𝑚∑
𝑗=𝑖+1

𝑥𝑖𝑥 𝑗 ⟨𝒗𝑖,𝐹 ( 𝑗) , 𝒗 𝑗,𝐹 (𝑖) ⟩

(5)

Although FFM have gotten significant performance improve-

ments over FM, their number of parameters is in the order of

𝑂 (𝑚𝑛𝐾). The huge number of parameters in FFM is undesirable in

the real-world production systems [9]. Therefore, it is appealing

to design alternative approaches that are competitive and more

memory-efficient.

Field-weighted Factorization Machines (FwFM) was pro-

posed in [16], which models the different field interaction strength

explicitly. More specifically, the interaction of a feature pair 𝑖 and 𝑗

in our proposed approach is modeled as

𝑥𝑖𝑥 𝑗 ⟨𝒗𝑖 , 𝒗 𝑗 ⟩𝑟𝐹 (𝑖),𝐹 ( 𝑗)

where 𝒗𝑖 , 𝒗 𝑗 are the embedding vectors of 𝑖 and 𝑗 , 𝐹 (𝑖), 𝐹 ( 𝑗) are the
fields of features 𝑖 and 𝑗 , respectively, and 𝑟𝐹 (𝑖),𝐹 ( 𝑗) ∈ R is a weight

to model the interaction strength between fields 𝐹 (𝑖) and 𝐹 ( 𝑗). The
formulation of FwFM is:

Φ𝐹𝑤𝐹𝑀 ((𝒘, 𝒗), 𝒙) = 𝑤0 +
𝑚∑
𝑖=1

𝑥𝑖𝑤𝑖 +
𝑚∑
𝑖=1

𝑚∑
𝑗=𝑖+1

𝑥𝑖𝑥 𝑗 ⟨𝒗𝑖 , 𝒗 𝑗 ⟩𝑟𝐹 (𝑖),𝐹 ( 𝑗)

(6)

FwFM are extensions of FM in the sense that it uses additional

weight 𝑟𝐹 (𝑖),𝐹 ( 𝑗) to explicitly capture different interaction strengths
of different field pairs. FFM can model this implicitly since they

learn several embedding vectors for each feature 𝑖 , each one 𝒗𝑖,𝐹𝑘
corresponds to one of other fields 𝐹𝑘 ≠ 𝐹 (𝑖), to model its different

interactions with features from different fields. However, the model

complexity of FFM is significantly higher than that of FM and

FwFM.

Recently, there are also lots of work on deep learning based click

prediction models [4, 7, 8, 13, 17, 21, 22, 25, 26, 28]. These models

capture both low order and high order interactions and achieve

significant performance improvement. However, the online infer-

ence complexity of these models is much higher than the shallow

models [5]. Model compression techniques such as pruning [5], dis-

tillation [27] or quantization are usually needed to accelerate these

models in the online inference. In this paper, we focus on improving

the low order interactions, and the proposed model can be easily

used as a shallow component in these deep learning models.

3 OUR MODEL
We propose a newmodel to represent the interaction of field pairs as

a matrix. Similar to FM and FwFM, we learn an embedding vector

for each feature. We define a matrix 𝑀𝐹 (𝑖),𝐹 ( 𝑗) to represent the

interaction between field 𝐹 (𝑖) and field 𝐹 ( 𝑗)

𝑥𝑖𝑥 𝑗 ⟨𝒗𝑖𝑀𝐹 (𝑖),𝐹 ( 𝑗) , 𝒗 𝑗 ⟩

where 𝒗𝑖 , 𝒗 𝑗 are the embedding vectors of feature 𝑖 and 𝑗 , 𝐹 (𝑖), 𝐹 ( 𝑗)
are the fields of feature 𝑖 and 𝑗 , respectively, and𝑀𝐹 (𝑖),𝐹 ( 𝑗) ∈ R𝐾×𝐾
is a matrix to model the interaction between field 𝐹 (𝑖) and field

𝐹 ( 𝑗). We name this model Field-matrixed Factorization Machines

(FmFM):

Φ𝐹𝑚𝐹𝑀 ((𝒘, 𝒗), 𝒙) = 𝑤0+
𝑚∑
𝑖=1

𝑥𝑖𝑤𝑖 +
𝑚∑
𝑖=1

𝑚∑
𝑗=𝑖+1

𝑥𝑖𝑥 𝑗 ⟨𝒗𝑖𝑀𝐹 (𝑖),𝐹 ( 𝑗) , 𝒗 𝑗 ⟩

(7)

FmFM are extensions of FwFM in that it uses a 2-dimensional

matrix𝑀𝐹 (𝑖),𝐹 ( 𝑗) to interact different field pairs, instead of a scalar
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weight 𝑟 in FwFM. With those matrices, features from the em-

bedding space can be transferred to 𝑛 − 1 spaces; we name those

matrices Field-matrices. Figure 1 demonstrates the calculation of

the interaction pairs (𝑣𝑖 , 𝑣 𝑗 ) and (𝑣𝑖 , 𝑣𝑘 ), while features 𝑖, 𝑗 and 𝑘
are from 3 different fields.

vi,F(j) = vi×MF(i)F(j) vi,F(k)=vi×MF(i)F(k)

Embedding vkEmbedding vj   

Matrix MF(i)F(k)Matrix MF(i)F(j)
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Figure 1: An example of FmFM interaction terms calculation

The calculation can be decomposed into 3 steps:

(1) Embedding Lookup: The feature embedding vectors 𝑣𝑖 , 𝑣 𝑗 ,

and 𝑣𝑘 are looked up from the embedding table, and 𝑣𝑖 will

be shared between those 2 pairs.

(2) Transformation: Then 𝑣𝑖 is multiplied by the matrices

𝑀𝐹 (𝑖)𝐹 ( 𝑗) and 𝑀𝐹 (𝑖)𝐹 (𝑘) respectively, here we get the in-

termediate vector 𝑣𝑖,𝐹 ( 𝑗) = 𝑣𝑖 ×𝑀𝐹 (𝑖)𝐹 ( 𝑗) for the field 𝐹 ( 𝑗),
and 𝑣𝑖,𝐹 (𝑘) = 𝑣𝑖 ×𝑀𝐹 (𝑖)𝐹 (𝑘) for the field 𝐹 (𝑘).

(3) Dot Product: The final interaction terms will be a simple

dot product between 𝑣 𝑗 and 𝑣𝑖,𝐹 ( 𝑗) , as well as 𝑣𝑘 and 𝑣𝑖,𝐹 (𝑘) ,
which are the black dots showed in Fig.1.

3.1 The United Framework of Factorization
Machines’ Family

FmFM have a similar design with, while extending, FM and FwFM;

in this section, we deep dive into their design, explain their struc-

ture with the 3-step FmFM framework above, and figure out the

fundamental relationships among these factorization machine mod-

els.

3.1.1 FM. Figure 2 shows the calculation of feature interactions

in FM, the difference to FmFM is that FM skip the step 2, and use

the shared embedding 𝑣𝑖 to do the final dot product with 𝑣 𝑗 and 𝑣𝑘
respectively. Since we know

𝑣𝑖 = 𝑣𝑖 𝐼𝐾 ,

we can construct an identity matrix 𝐼𝐾 and let all field matrices

equal to 𝐼𝐾 . As the identity matrix shows in Fig.2, the FM actually

is a special case of FmFM when all field matrices are 𝐼𝐾 . Since those

matrices 𝐼𝐾 are fixed and non-trainable, we define its degree of

freedom to be 0.

Embedding vkEmbedding vj  

⬤⬤

Embedding vi

…
…

…
…

Embedding vi Embedding vi

1

1

1

1

1

Figure 2: An explanation of FM with FmFM framework

3.1.2 FwFM. Fig.3 shows the calculation of feature interactions in

FwFM. There is a change from the original definition 2, while, it is

easy to know that:

⟨𝒗𝑖 , 𝒗 𝑗 ⟩𝑟𝐹 (𝑖),𝐹 ( 𝑗) = ⟨𝒗𝑖𝑟𝐹 (𝑖),𝐹 ( 𝑗) , 𝒗 𝑗 ⟩

Thus, we calculate the term 𝒗𝑖𝑟𝐹 (𝑖),𝐹 ( 𝑗) firstly in figure 3, instead

of ⟨𝒗𝑖 , 𝒗 𝑗 ⟩ in the original definition in Eq.2. It is clear now that the

intermediate vector in step 2 is actually a scaled embedding vector:

𝑣𝑖,𝐹 ( 𝑗) = 𝑣𝑖𝑟𝐹 (𝑖)𝐹 ( 𝑗) = 𝑣𝑖 (𝑟𝐹 (𝑖)𝐹 ( 𝑗) 𝐼𝐾 )

Thus, we construct the field matrix in FwFM as a scalar matrix

𝑟𝐹 (𝑖)𝐹 ( 𝑗) 𝐼𝐾 , which is a diagonal matrix with all its main diagonal

entries equal 𝑟 . Its effect on the embedding vector 𝑣𝑖 is a scalar

multiplication by 𝑟 . We show this matrix at the corner of Fig.3

(left one). Since the scalar 𝑟 is trainable, it has one more degree of

freedom than FM, we define its degree of freedom as 1.

vi rF(i)F(j) vi rF(i)F(k)

Embedding vkEmbedding vj   

⬤⬤

Embedding vi,F(j)

…
…

…
…

rF(i)F(j) rF(i)F(k)

d1

d2
…

…
dK

r

r

r

r

r

Figure 3: An explanation of FwFM and FvFM with FmFM
framework
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3.1.3 FvFM. We follow the clue above, and give one more free-

dom to the field matrix in FwFM. Let the field matrix become a

diagonal matrix in which the main diagonal entries are trainable

variables, instead of one single variable in FwFM, we can rewrite

the intermediate vector:

𝑣𝑖,𝐹 ( 𝑗) = 𝑣𝑖𝐷𝐹 (𝑖)𝐹 ( 𝑗) = 𝑣𝑖 ⊙ 𝑑𝐹 (𝑖)𝐹 ( 𝑗) ,

where 𝐷𝐹 (𝑖)𝐹 ( 𝑗) = diag(𝑑1, 𝑑2, . . . , 𝑑𝐾 ), this can be expressed

more compactly by using a vector 𝑑𝐹 (𝑖)𝐹 ( 𝑗) ∈ R𝐾 instead of the

diagonalmatrix, and taking theHadamard product (⊙) of the vectors
𝑣𝑖 . Figure 3 demonstrates this case in the right matrix at the corner.

We name thismethod Field-vectorized FactorizationMachines
(FvFM). The FvFM have one more freedom than FwFM: the train-

able parameters become a vector instead of a scalar; thus, we define

its degree of freedom to be 2.

3.1.4 FmFM. Let’s revisit FmFM in figure 1. It has all the degrees of

freedom of a matrix, which is 3. All the variables in those matrices

are trainable, and we expect the FmFM to have a greater predictive

capacity than other factorization machine models. We will evaluate

this hypothesis in the next section.

Overall, we have found that FM, FwFM, FvFM are all special cases

of FmFM, the only differences are their field matrices’ restrictions.

According to their flexibility, we summarize them in the Table1

Model Field Interaction Degree of Freedom

FM Constant 0

FwFM Scalar 1

FvFM Vector 2

FmFM Matrix 3

Table 1: Degrees of freedom in different FM models

3.1.5 Connections to OPNN. FmFM can also be viewed as modeling

the interaction of two feature embedding vectors by a weighted

outer product:

Φ𝐹𝑚𝐹𝑀 ((𝒘, 𝒗), 𝒙) = 𝑤0+
𝑚∑
𝑖=1

𝑥𝑖𝑤𝑖+
𝑚∑
𝑖=1

𝑚∑
𝑗=𝑖+1

𝑥𝑖𝑥 𝑗𝑝 (𝒗𝑖 , 𝒗 𝑗 ,𝑾𝐹 (𝑖),𝐹 ( 𝑗) )

(8)

where𝑾𝐹 (𝑖),𝐹 ( 𝑗) ∈ R𝐾×𝐾 , and

𝑝 (𝒗𝑖 , 𝒗 𝑗 ,𝑾𝐹 (𝑖),𝐹 ( 𝑗) ) =
𝐾∑
𝑘=1

𝐾∑
𝑘′=1

𝑣𝑘𝑖 𝑣
𝑘′
𝑗 𝑤

𝑘,𝑘′

𝐹 (𝑖),𝐹 ( 𝑗) (9)

OPNN also proposed to model the feature interactions via outer

product. However, FmFM is different from OPNN in the following

two aspects. First, FmFM is a simple shallowmodel without the fully

connected layers as in [17]. We can use FmFM as a shallow compo-

nent or a building block in any deep CTR models, like DeepFM [7].

Second, we support field-specific variable embedding dimensions

for features from different fields, which will be discussed in Sec-

tion 4.1.

3.2 FFM and FmFM, Memorization vs Inference
Unlike other factorization machines above, FFM cannot be reformed

into the FmFM framework since it has a different way to look up

their feature embeddings, we demonstrate its interaction terms’

calculation in Figure 4. FFM never share the feature embedding; it

always looks up the field specific embeddings from the embedding

tables. Thus, there are 𝑛 − 1 embeddings for one single feature,

which are prepared to cross 𝑛 − 1 other fields respectively. Those

field-specific embeddings will be learned independently during

the training process, and there are no restrictions among those

embeddings even belonging to the same feature.

Embedding vk,F(i)Embedding vj,F(i)   

⬤⬤

…
…

…
…

Embedding vi,F(j) Embedding vi,F(k)

…
…

…
…

Embedding vi,F(j) Embedding vi,F(k)

Figure 4: An example of FFM

This FFM mechanism gives the model maximal flexibility to fit

the data, and the huge number of embedding parameters also has

incredible memorization capacity. Meanwhile, there is always a risk

of over-fitting with it, even when there are billions of instances

to be trained. The nature of the features’ distribution is a long

tail distribution, instead of a uniform distribution, that makes the

feature pairs’ distribution even more imbalanced.

Given an example in Fig.4, assume that feature pair (𝑣𝑖 , 𝑣 𝑗 ) is a
high frequency combination, while (𝑣𝑖 , 𝑣𝑘 ) is a low frequency (pos-

sibly 0 frequency, or never appeared), since 𝑣𝑖,𝐹 ( 𝑗) and 𝑣𝑖,𝐹 (𝑘) are
2 independent embeddings in the setting of FFM, thus embedding

𝑣𝑖,𝐹 ( 𝑗) may be trained well but 𝑣𝑖,𝐹 (𝑘) may not. Due to the long

tail distribution of features, those high frequent features pairs may

dominate the number of training data, while other low frequency

features which dominate the number of features, cannot be trained

well.

FmFM use shared embedding vectors, as there is only one copy

for each single feature. It utilizes a transformation process to project

this single embedding vector into other 𝑛− 1 fields. This is basically

an inference process, and those 𝑛−1 vectors 𝑣𝑖,𝐹 (∗) are actually tied
with the original embedding vector 𝑣𝑖 . With those field matrices, the

vectors are transformable forward and backward. That is the fun-

damental difference between FFM and FmFM; those transformable

intermediate vectors within the same feature help the model learn

those low frequency feature pairs well.

Back to the example in Fig.1, even the feature pair (𝑣𝑖 , 𝑣𝑘 ) is of
low frequency, the feature embedding 𝑣𝑖 can still be trained well

through the other high frequency feature pairs like (𝑣𝑖 , 𝑣 𝑗 ), and the
field matrix 𝑀𝐹 (𝑖),𝐹 ( 𝑗) can be trained well through other feature

interactions between field 𝐹 (𝑖) and field 𝐹 (𝑘). Thus, if the low
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frequency feature pair (𝑣𝑖 , 𝑣𝑘 ) occurs during evaluation or test, the

intermediate vector 𝑣𝑖,𝐹 (𝑘) can be inferred through 𝑣𝑖𝑀𝐹 (𝑖),𝐹 ( 𝑗) .
Despite this difference between FFM and FmFM, they have more

in common. An interesting observation between figure 4 and figure

1 is that, when all transformations are done, the FmFM model

becomes a FFM model. We can cache those intermediate vectors

and avoid matrix operations during runtime; the details will be

discussed in the next section.

In contrast, FFM model cannot be reformed to a FmFM model,

as we have mentioned above. Those 𝑛 − 1 field features embedding

tables are independent, thus it is hard to compress them into one

single feature embedding table and restore them when needed.

3.3 Model Complexity
The number of parameters in FM is𝑚 +𝑚𝐾 , where𝑚 accounts for

the weights for each feature in the linear part {𝑤𝑖 |𝑖 = 1, ...,𝑚} and
𝑚𝐾 accounts for the embedding vectors for all the features {𝒗𝑖 |𝑖 =
1, ...,𝑚}. FwFM use 𝑛(𝑛 − 1)/2 additional parameters {𝑟𝐹𝑘 ,𝐹𝑙 |𝑘, 𝑙 =
1, ..., 𝑛} for each field pair so that the total number of parameters of

FwFM is𝑚 +𝑚𝐾 + 𝑛(𝑛 − 1)/2. The additional matrices in FmFM is

𝑛(𝑛−1)/2 as compared to FM, and it has extra
𝑛 (𝑛−1)

2
𝐾2

parameters.

For FFM, the number of parameters is𝑚 +𝑚(𝑛 − 1)𝐾 since each

feature has 𝑛 − 1 embedding vectors. Given that usually 𝑛 ≪ 𝑚,

the number of parameters of other Factorization Machines are

comparable with that of FM and significantly less than that of

FFM. In Table 2 we compare the model complexity of all models

mentioned so far. We also list the estimated number of parameters

in the setting of section 5 for each model, which use the public

data set Criteo. Those numbers can give us an intuitive impression

about the size of each model. FM, FwFM, and FmFM have similar

sizes while FFM have more than dozen times than others.

Model N of Parameters Estimated N in Criteo Dataset

LR 𝑚 1.33M

Poly2 𝑚 + 𝐻 45M

FM 𝑚 +𝑚𝐾 14.63M

FwFM 𝑚 +𝑚𝐾 + 𝑛 (𝑛−1)
2

14.63M

FmFM 𝑚 +𝑚𝐾 + 𝑛 (𝑛−1)
2

𝐾2
14.63M

FFM 𝑚 +𝑚(𝑛 − 1)𝐾 859.18M

Table 2: A summary of model complexities (ignoring the
bias term 𝑤0). The estimate of the total 𝑁 of the model in
the settings of Section 5.3

4 MODEL OPTIMIZATION
In this section we present our methodologies to optimize the FmFM

model. There are 3 tactics which we can devise to reduce the com-

plexity of FmFM further. In section 4.1 we introduce the field-

specific embedding dimensions, which is a unique property in

FmFM; it allows us to use field specific dimensions in the embed-

ding table, instead of a fixed length 𝐾 globally. In Section 4.2 we

introduce the method to cache the intermediate vectors to avoid

the matrix operations, which can reduce the FmFM model’s com-

putational complexity in runtime. In Section 4.5 we introduce the

method to reduce the linear terms and replace them with field

specific weights.

4.1 Field-specific Embedding Dimensions
The main improvement of FM over LR model is that, FM use the

embedding vector to represent each feature. In order to make the

dot product, it requires the vector dimension 𝐾 of all feature em-

beddings to be the same, even though features come from different

fields. The improved models like FwFM, FvFM also adopt this prop-

erty. The vector dimension matters both in model complexity and

model performance, the work [16] discussed this trade-off between

performance and time cost, but the vector dimension can only be

optimized globally.

When we utilize the matrix multiplication in FmFM, it actually

does not require the field matrices to be square matrices; we can

adjust the output vector length by changing the shape of the field

matrix. This property gives us an another flexibility to set the field-

specific lengths on-demand in the embedding table, as we show in

figure 5.
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Em
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dd
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g 
v i
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…
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Figure 5: An Example of Variable Vector Length of Embed-
dings

The dimension of an embedding vector determines the amount

of information it can carry; this property allows us to accommodate

the need for each field. For the example (𝑖, 𝑗) in Fig.5, the field

𝑢𝑠𝑒𝑟_𝑔𝑒𝑛𝑑𝑒𝑟 may contain only 3 values (male, female, other), while

another field 𝑡𝑜𝑝_𝑙𝑒𝑣𝑒𝑙_𝑑𝑜𝑚𝑎𝑖𝑛 may contain more than 1 million

features. Thus, the embedding table of field 𝑢𝑠𝑒𝑟_𝑔𝑒𝑛𝑑𝑒𝑟 may only

need 5-dimension (5D), while the field 𝑡𝑜𝑝_𝑙𝑒𝑣𝑒𝑙_𝑑𝑜𝑚𝑎𝑖𝑛 may need

7D. The field matrix𝑀 should be set up with a shape in (7, 5). When

we cross the feature between 𝑡𝑜𝑝_𝑙𝑒𝑣𝑒𝑙_𝑑𝑜𝑚𝑎𝑖𝑛 and 𝑢𝑠𝑒𝑟_𝑔𝑒𝑛𝑑𝑒𝑟 ,

the matrix can transfer the 5D feature vector to a 7D vector, making

it ready to do a dot product with the feature vector from field

𝑡𝑜𝑝_𝑙𝑒𝑣𝑒𝑙_𝑑𝑜𝑚𝑎𝑖𝑛.

To optimize the field-specific embedding vector dimension with-

out model performance loss, we propose a 2-pass method. In the

first pass, we use a larger fixed embedding vector dimension for
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all fields, e.g. 𝐾 = 16, and train the FmFM as a full model. From

the full model, we learn how much information (variance) in each

field, then we utilize a standard PCA dimensionality reduction to

the embedding table in each field. From the experiment in Section

5.4 we found that the new dimension which contains 95% original

variance is a good trade-off. With this new field specific dimen-

sion setting, we train the model in a second pass from scratch, and

should get the second model without any significant performance

loss, compared to the first full model.

Feature

Field ID

Emb

Dim

Feat. N

in Field

Field #01 3 62

Field #02 8 113

Field #03 5 125

Field #04 7 50

Field #05 9 223

Field #06 8 147

Field #07 6 99

Field #08 5 78

Field #09 8 103

Field #10 3 8

Field #11 5 31

Field #12 3 56

Field #13 6 81

Field #14 8 1,457

Field #15 12 555

Field #16 2 245,195

Field #17 11 166,164

Field #18 5 305

Field #19 4 18

Field #20 14 12,054

Feature

Field ID

Emb

Dim

Feat. N

in Field

Field #21 8 633

Field #22 2 3

Field #23 13 46,329

Field #24 14 5,228

Field #25 8 243,452

Field #26 13 3,176

Field #27 4 26

Field #28 14 11,744

Field #29 10 225,320

Field #30 6 10

Field #31 14 4,726

Field #32 12 2,056

Field #33 2 3

Field #34 9 238,638

Field #35 4 16

Field #36 6 15

Field #37 12 67,854

Field #38 7 87

Field #39 11 50,940

Table 3: The optimized dimensions for each field in Criteo
data set, 95% variance kept

Table 3 shows the optimized dimension for each field in the

Criteo dataset, with the PCA method. This list shows that the range

of those dimensions are huge which from 2 to 14, and most of the

dimensions are less than 10. The average 𝐾 is only 7.72, which

is less than the optimal setting in the FwFM. With keeping most

variance from the dataset, the lower average dimension means the

model has fewer parameters, requires less memory.

4.2 Intermediate Vectors Cache
FmFM is a lower complexity model than FFM, in the number of

parameters; however it requires expensive matrix operations in the

transformation step. In table 4, we list the number of Floating Point

Operations (FLOPs) for each model
1
, and estimate it with typical

settings.

1
We use the following values to estimate the FLOPs: 𝑛 = 39, 𝐾 = 16,𝐻 = 200 denotes

the number of nodes in the hidden layers of DNN, 𝐿 = 3 denotes the number of hidden

layers in DNN, 𝐾 ′ = 32 denotes the dimension of embedding vectors in the new space

in AutoInt, and 𝑠FwFM = 90%, 𝑠DNN = 80% denotes the sparsity rate of the FwFM and

DNN component in DeepLight.

Model Floating Point Operations Estimated #

LR 𝑂 (𝑛) 78

Poly2 𝑂 (𝑛2) 1,560

FM 𝑂 (𝑛𝐾) 1,920

FwFM 𝑂 (𝑛2𝐾) 25,272

FFM 𝑂 (𝑛2𝐾) 24,531

FmFM 𝑂 (𝑛2𝐾2) 403,923

FmFM(cached) 𝑂 (𝑛2𝐾) 24,531

FmFM(cached
& 95% variance) 𝑂 (𝑛2𝐾) 8,960
Wide & Deep 𝑂 (𝑛2 + 𝑛𝐾𝐻 + 𝐿𝐻2) ~500,000

Deep & Cross 𝑂 (𝑛2𝐾2 + 𝑛𝐾𝐻 + 𝐿𝐻2) ~510,000

DeepFM 𝑂 (𝑛𝐾𝐻 + 𝐿𝐻2 + 𝑛2) ~246,000

xDeepFM 𝑂 (𝑛𝐻2𝐾𝐿) ~150,000,000

AutoInt 𝑂 (𝑛𝐻𝐾 ′(𝑛 + 𝐾)) ~28,000,000

FiBiNET 𝑂 (𝑛2𝐾2 + 𝑛2𝐾𝐻 + 𝐿𝐻2) ~10,000,000

DeepLight

𝑂 (𝑛2𝐾 (1 − 𝑠FwFM)+
(𝑛𝐾𝐻 + 𝐿𝐻2) (1 − 𝑠DNN)) ~102,000

Table 4: A summary of Floating Point Operations by model

Among those Factorization Machine models, the FmFM needs

the most operations to accomplish its calculation, which is about 𝑘

times as FwFM and FFM, but still faster than most DNN models. In

section 3.2, we have shown that a FmFM model can be transformed

into a FFM model, by caching all intermediate vectors. In this sense,

we can reduce its number of operations to the same magnitude as

FM and FFM, which is almost 20 times faster.

4.3 Embedding Dimension and Cache
Optimization Combined

When we combine the field-specific embedding dimensional opti-

mization and the cache optimization, the inference speed can be

much faster, and the required memory can be reduced significantly.

This benefits from another property of FmFM - the interaction

matrices are symmetrical, which means

⟨𝒗𝑖𝑀𝐹 (𝑖)𝐹 ( 𝑗) , 𝒗 𝑗 ⟩ = ⟨𝒗 𝑗𝑀𝑇𝐹 (𝑖)𝐹 ( 𝑗) , 𝒗𝑖 ⟩ (10)

We have a proof for this lemma in the Appendix.

Thus, we can choose to cache those intermediate vectors which

have lower field dimensions, and dot-product with the other feature

vectors during inference. For example, in the setting of table 3, two

features 𝑣𝑖 and 𝑣 𝑗 are from field #16 and #28 respectively. With this

property, when we calculate the interaction between 𝑣𝑖 and 𝑣 𝑗 , we

can cache either 𝒗𝑖𝑀16,28 or 𝒗 𝑗𝑀𝑇
16,28

.

Since the field matrix 𝑀16,28 has a shape of [2, 14], the former

one 𝒗𝑖𝑀16,28 increased the dimension from 2 (field #16) to 14 (in-

termediate vector), then dot-product with 𝒗 𝑗 whose dimension is

also 14. It costs 14 units of memory for the intermediate vectors

cache, and takes 2 × 14 FLOPs during inference. By contrast, the

latter one 𝒗 𝑗𝑀𝑇
16,28

reduces the dimension from 14 (field #28) to 2

(intermediate vector), then dot-product with 𝒗𝑖 whose dimension

is also 2. It costs 2 units of memory for the intermediate vectors

cache, and takes 2 × 2 FLOPs during inference. In this single field
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pair, the optimized cache with field-specific embedding dimensions

can save 7 times memory and time without any precision loss.

With those two optimization techniques combined, the FmFM

model’s time complexity is reduced drastically; in table 4, we esti-

mate that the optimized model only takes 8,960 FLOPs, which is

only about 1/3 of FFM. In the section5.4, we will show that this

optimized model can achieve the same performance as the full

model.

4.4 Soft Pruning
The field-specific embedding dimensions also act in a role similar to

pruning actually; while traditional pruning such as DeepLight [5]

gives a binary decision to keep or drop a field or a field pair, the field-

specific embedding dimensions give us a new way to determine the

importance of each field and field pair on-demand, and assign each

field a factor to represent its importance. For example, in the FmFM

model of Table3, the cross field #17 and #20 is a high strength pair;

it takes 11 units of cache and 2 × 11 FLOPs during inference; in

contrast, a low strength pair, field #18 and #22, only takes 2 units

of cache and 2 × 2 FLOPs.

When we drop a field pair in the traditional pruning, its signal

was lost totally; while in this method, a field pair still keeps the

major information with minimal cost. It is a soft version of prun-

ing, which is similar to Softmax. It is more efficient and sees less

performance drop during soft pruning.

Figure 6: An example of Mutual Information Score between
field pairs and label in Criteo Dataset

Figure 6 shows a heat-map of mutual information scores be-

tween field pairs and labels in the Criteo dataset, which represents

the strength of field pairs in prediction. Figure 7 shows the cross

field dimensions, which is the lower dimension between two fields

(explanation in Section 4.3); it represents the parameters and com-

putational cost for each field pair. Obviously, these two heat-maps

are highly related to each other, which means the optimized FmFM

model allocates more parameters and more computation on those

higher strength field pairs, and fewer parameters and less computa-

tion on lower strength field pairs.

Figure 7: An example of cross fields dimensions -𝑚𝑖𝑛(𝐷𝑖 , 𝐷 𝑗 )
in Criteo Dataset

4.5 Linear Terms
There is a linear part in Eq.8:

𝑚∑
𝑖=1

𝑥𝑖𝑤𝑖 (11)

which requires an extra scalar𝑤𝑖 to be learned for each feature.

However the learned embedding vector 𝑣𝑖 should contain more

information, and the weight𝑤𝑖 can be learned from 𝑣𝑖 by a simple

dot product. Another benefit from the learned 𝑣𝑖 is that, it can help

to learn the embedding vector from the linear part.

We follow the method from the work of [16], by learning a field

specific vector 𝑤𝐹 (𝑖) so that all features from the same field 𝐹 (𝑖)
will share the same linear weight vector. Then the linear terms can

be rewritten to:

𝑚∑
𝑖=1

𝑥𝑖 ⟨𝒗𝑖 ,𝑤𝐹 (𝑖) ⟩ (12)

We apply this linear term optimization to FwFM, FvFM and

FmFM by default in the rest of the paper.

5 EXPERIMENTS
In this section we present our experimental evaluation results. We

will first describe the data sets and implementation details in Sec-

tion 5.1 and 5.2 respectively. In Section 5.3 we compare FmFM with

other baseline models like LR, FM, FwFM and FFM, as well as the

state-of-the-art methods like Wide & Deep, Deep & Cross network,

xDeepFM, AutoInt, FiBiNET and DeepLight. In Section 5.4, we did
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a few experiment on the Criteo dataset and observe the model per-

formance change when we apply the field-specific dimension in

embedding.

5.1 Data sets
We use 2 public data sets to evaluate our model performance:

(1) The first one is the Criteo CTR data set; it is a well-know

benchmark data set which used for the Criteo Display Ad-

vertising Challenge [12]. The Criteo data set is already label

balanced, the positive to the negative ratio is about 1:3. There

are 45 million samples and each sample has 13 numerical

fields and 26 categorical fields.

(2) The second data set is the Avazu CTR data set; it was used

in the Avazu CTR prediction competition, which predicts

whether a mobile ad will be clicked. The positive to the

negative ratio in the Avazu data set is about 1:5. There are

40 million samples and each sample has 23 categorical fields.

We follow those existing works [5, 7, 13, 21, 22, 25, 26, 28], for

each data set, we split it into 3 parts randomly, 80% for training,

10% for validation, and 10% for testing.
2

Regarding to those numerical features in the Criteo data set, we

adopt the log transformation of 𝑙𝑜𝑔(𝑥)2 if 𝑥 > 2, which proposed by

the winner of the Criteo competition
3
to normalize the numerical

features. This method was also used by [5] and [22]. Regarding

the date/hour feature in the Avazu data set, we transfer it into 2

features: day_of_week(0-6) and hours(0-23) to consume the feature

better.

We also remove those infrequent features that are less than a

threshold in both data sets and replace their values with the default

"unknown" feature in that field. We set the threshold to 8 for the

Criteo data set, and to 5 for the Avazu data set.

The statistics of the normalized data sets are shown in Table 5.

Data set Samples Fields Features Pos:Neg

Criteo

Train 36,672,493

39 1,327,180 ~1:3Validation 4,584,062

Test 4,584,062

Avazu

Train 32,343,173

23 1,544,257 ~1:5Validation 4,042,897

Test 4,042,897

Table 5: Statistics of training, validation and test sets of the
Criteo data sets.

5.2 Experiment Setup
We have implemented the LR (logistic regression) and all factor-

ization machine models (FM, FwFM, FFM, FvFM and FmFM) with

Tensorflow.
4
. We follow the implementation of LR and FM in [17],

and implement FFM, FwFM following the work [16].

2
Some of those works split 90%:10% for just training and testing, but we adopt the

strict one with validation set and less training set.

3
https://www.csie.ntu.edu.tw/ r01922136/kaggle-2014-criteo.pdf

4
We open-sourced the training code and the feature extraction code at

https://github.com/VerizonMedia/FmFM

We evaluate all models performance by AUC (Area Under the

ROC Curve) and Log Loss on the test set. It is noticeable that a

slightly higher AUC or lower Log Loss at 0.001-level is regarded a

significant improvement for CTR prediction task, which has also

been pointed out in existing works [4, 22, 25].

For those state-of-the-art models, they are all DNN models and

may needmore hyper-parameters tuning, we pull their performance

(AUC and Log Loss) from their original papers, in order to keep their

results optimal. It is fair to compare our results with theirs, since

we use more strict data splittings; while their implementations may

have slight differences, e.g. feature processing, optimizer (Adam or

Adagrad), we list their results just for reference. The Deep & Cross

Network is an exception, since their paper only listed the Log Loss

but not AUC. Thus, we implemented their model and got a similar

performance.

5.3 Performance Comparisons
In this section we will conduct performance evaluation for FmFM.

We will compare it with LR, FM, FwFM and FFM on the two data

sets mentioned above. We always use the full size model to compare

in the results; that means we don’t use any optimization methods

mentioned in Section 4. For the parameters such as regularization

coefficient 𝜆, and learning rate 𝜂 in all models, we select those

which lead to the best performance on the validation set and then

use them in the evaluation on the test set. Experiment results can

be found in Table 6 for the Criteo data set, and Table 7 for the Avazu

data set.

Models

AUC Log Loss

(Test Set)Training Validation Test

LR 0.7930 0.7918 0.7917 0.4582

FM 0.8142 0.8075 0.8075 0.4441

FFM 0.8230 0.8103 0.8103 0.4414

FwFM 0.8191 0.8092 0.8092 0.4426

FvFM(ours) 0.8192 0.8102 0.8101 0.4417

FmFM(ours) 0.8183 0.8109 0.8109 0.4410
Deep & Cross 0.8244 0.8118 0.8118 0.4413

Wide & Deep - - 0.7981 0.4677

DeepFM - - 0.8007 0.4508

xDeepFM - - 0.8052 0.4418

AutoInt - - 0.8061 0.4454

FiBiNET - - 0.8103 0.4423

DeepLight - - 0.8123 0.4395
Table 6: Comparison among models on the Criteo CTR data
sets.

Weobserve that FvFM and FmFM can achieve better performance

than LR, FM, and FwFM on both data sets, which is in our expecta-

tion. Surprisingly, the FmFM can achieve better performance than

FFM constantly in both test sets. As we mentioned before, even

though FFM is a model dozens times larger than FmFM, our FmFM

model still get the best AUC in the test set among all shallow mod-

els. Additionally, if we compare the differences in AUC between

training and test, we found that the Δ𝐴𝑈𝐶𝐹𝑚𝐹𝑀 = 0.0074 is the
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Models

AUC Log Loss

(Test Set)Training Validation Test

LR 0.7526 0.7521 0.7517 0.3953

FM 0.7744 0.7696 0.7695 0.3857

FFM 0.8012 0.7761 0.7761 0.3826

FwFM 0.7822 0.7730 0.7731 0.3835

FvFM(ours) 0.7836 0.7732 0.7733 0.3834

FmFM(ours) 0.7943 0.7764 0.7763 0.3822
Deep & Cross 0.8109 0.7825 0.7826 0.3791

AutoInt - - 0.7752 0.3823

Fi-GNN - - 0.7762 0.3825

FGCNN+IPNN - - 0.7883 0.3746

DeepLight - - 0.7897 0.3748
Table 7: Comparison amongmodels on Avazu CTR data sets.

lowest one among those factorization machine models, which af-

firms our hypothesis in section 3.2: those low frequency features

are also trained well with the help of the interaction matrix, and

this mechanism helps FmFM to avoid over-fitting.

5.4 Embedding Dimension Optimization
In this part we implement the method described in 4.1, whereby we

have a full size model, we can extract its embedding tables for each

field, then we utilize a standard PCA dimensionality reduction. Here

we do several experiments and compare how the dimensionality

reduction impact the model performance, and try to find a trade-off

between the model size, speed and its performance.

We use the full size FmFM model from experiment 5.3 on the

Criteo data set to evaluate our metrics. We keep 99%, 97%, 95%,

90%, 85% and 80% variance in PCA dimensionality reduction respec-

tively, and estimate the average embedding dimensions and float

operations (FLOPs, with cached intermediate vectors). With the

new dimensions setting, we train those FmFM models the second

pass respectively, and observe the AUC and Log Loss change in test

set.

Table 8 shows the summary of experiments. The average em-

bedding dimension was reduced significantly when we keep less

variance from PCA: there is only less than 1/2 embedding dimen-

sions and 1/3 computation cost when we keep 95% variance, while

there is no significant change on the model’s performance compare

to the full size model. Thus, 95% variance is a good trade-off when

we optimize the embedding dimensions in FmFM.

Figure 8 shows these models’ performance (in AUC) and their

computational complexity (in FLOPs). As a shallow model, the

optimized FmFM model gets higher AUC as well as lower FLOPs,

compared with all the baseline models except Deep & Cross and

DeepLight. While its computational cost is much lower than these

two complex models which ensembled DNN module and shallow

module, its FLOPs is only 1.76% and 8.78% of them, respectively.

The lower FLOPs makes it preferable when the computation latency

is strictly limited, which is the common scenario in the real-time

online ads CTR prediction and recommender systems.

Variance

%

Emb Dim

(Average)

FLOPs

Estimated #

AUC

(Test Set)

Log Loss

(Test Set)

Full 16(100%) 24,531(100%) 0.8109 0.4410

99% 10.56(66.0%) 12,884(52.5%) 0.8109 0.4410

97% 8.69(54.3%) 10,280(41.9%) 0.8107 0.4411

95% 7.72(48.2%) 8,960(36.5%) 0.8108 0.4411
90% 6.26(39.1%) 7,202(29.4%) 0.8103 0.4415

85% 3.82(23.9%) 4,716(19.2%) 0.8084 0.4432

80% 3.36(21.0%) 4,392(17.9%) 0.8080 0.4436

Table 8: Compare among FmFM optimized models with em-
bedding dim optimization, an example of the Criteo Data
Set

Figure 8: AUC and FLOPs comparison among all models on
the Criteo dataset

6 CONCLUSION AND FURTHERWORKS
In conclusion, we propose a novel approach FmFM to model the

interactions of field pairs as a matrix. We prove that FmFM is a

unified framework of factorization machine model family, in which

both FM and FwFM can be treated as special cases. We devise a

few optimizations to FmFM, including field-specific embedding

dimensions and caching intermediate vectors. These optimizations

make the FmFM lightweight and faster during inference, taking only

thousands of floating-point operations to make a prediction. We

have done comprehensive experiments to verify the effectiveness

and efficiency of the proposed model. It achieves state-of-the-art

performance among all shallow models, including FM, FFM and

FwFM, and its performance is even comparable to those complex

DNN models.

With regard to future work, there are a few potential research

directions:

• The FmFM is still a linear model, since the field interaction

arematrices, and embedding vectors are transformed linearly.

We can introduce the non-linear layers to the field interaction

and let the model become a non-linear model, which is more

flexible.
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• All the factorization machine models are actually Degree-2

models, which allows up to 2 fields interactions. This restric-

tion is majorly because the dot product. In the future, we can

introduce the 3D tensor and allows the 3 fields interaction,

or even higher ranks. This work may require more model

optimization since there are too much Degree-3 interactions.

• We can combine the DNNmodels like theWide and Deep [4],

DeepFM [7], DeepLight [5], and try FmFM as a building block

in DNN models to further improve their performances. We

believe this method should be more competitive in the model

performance, when compare to those deep learning based

models in Section 2.
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A MATH PROOF
Lemma A.1. Given two row vectors 𝑣𝑖 and 𝑣 𝑗 whose lengths are 𝑘

and 𝑙 respectively, there is a matrix𝑀 ∈ R𝑘,𝑙 , then:

𝒗𝑖 ×𝑀 · 𝒗 𝑗 = 𝒗 𝑗 ×𝑀𝑇 · 𝒗𝑖 (13)

where × denotes matrix multiplication, and · denotes dot product.

Proof. Since 𝒗𝑖 ×𝑀 · 𝒗 𝑗 is a scalar, we denote it as 𝑎, and the

dot product can be rewrite to a matrix multiplication, we rewrite

the left of the equation:

𝑎 = 𝒗𝑖 ×𝑀 · 𝒗 𝑗 = 𝒗𝑖 ×𝑀 × 𝒗𝑇𝑗 (14)

while the transpose of a scalar equals to itself:

𝑎𝑇 = (𝒗𝑖 ×𝑀 × 𝒗𝑇𝑗 )
𝑇 = 𝒗 𝑗 ×𝑀𝑇 × 𝒗𝑇𝑖 = 𝒗 𝑗 ×𝑀𝑇 · 𝒗𝑖 = 𝑎 (15)

Hence, the left equals the right. □
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